961 research outputs found

    A non-linear structure preserving matrix method for the low rank approximation of the Sylvester resultant matrix

    Get PDF
    A non-linear structure preserving matrix method for the computation of a structured low rank approximation S((f) over bar , (g) over bar) of the Sylvester resultant matrix S(f , g) of two inexact polynomials f = f(y) and g = g(y) is considered in this paper. It is shown that considerably improved results are obtained when f (y) and g(y) are processed prior to the computation of S((f) over bar , (g) over bar), and that these preprocessing operations introduce two parameters. These parameters can either be held constant during the computation of S((f) over bar , (g) over bar), which leads to a linear structure preserving matrix method, or they can be incremented during the computation of S((f) over bar, (g) over bar), which leads to a non-linear structure preserving matrix method. It is shown that the non-linear method yields a better structured low rank approximation of S((f) over bar , (g) over bar) and that the assignment of f (y) and g(y) is important because S((f) over bar , (g) over bar) may be a good structured low rank approximation of S(f, g), but S((f) over bar , (g) over bar) may be a poor structured low rank approximation of S (g f) because its numerical rank is not defined. Examples that illustrate the differences between the linear and non-linear structure preserving matrix methods, and the importance of the assignment off (y) and g(y), are shown. (C) 2010 Elsevier B.V. All rights reserved

    Research Surveys and Dedicated Training - Compendium of Shiptime Awards 2008

    Get PDF
    A description of research surveys and ship-based training programmes carried out during 2008 on board the national research vessels, funded under the Marine Research Sub-programme of the National Development Plan (2007-’13)Marine Research Sub-Programme NDP 2007-'13Funder: Marine Institut

    Structured total least norm and approximate GCDs of inexact polynomials

    Get PDF
    The determination of an approximate greatest common divisor (GCD) of two inexact polynomials f=f(y) and g=g(y) arises in several applications, including signal processing and control. This approximate GCD can be obtained by computing a structured low rank approximation S*(f,g) of the Sylvester resultant matrix S(f,g). In this paper, the method of structured total least norm (STLN) is used to compute a low rank approximation of S(f,g), and it is shown that important issues that have a considerable effect on the approximate GCD have not been considered. For example, the established works only yield one matrix S*(f,g), and therefore one approximate GCD, but it is shown in this paper that a family of structured low rank approximations can be computed, each member of which yields a different approximate GCD. Examples that illustrate the importance of these and other issues are presented

    Complications from IV Alteplase in Mild Stroke Patients in a Multi-state Health System

    Get PDF
    https://digitalcommons.psjhealth.org/other_pubs/1071/thumbnail.jp

    Exact Solution for Relativistic Two-Body Motion in Dilaton Gravity

    Get PDF
    We present an exact solution to the problem of the relativistic motion of 2 point masses in (1+1)(1+1) dimensional dilaton gravity. The motion of the bodies is governed entirely by their mutual gravitational influence, and the spacetime metric is likewise fully determined by their stress-energy. A Newtonian limit exists, and there is a static gravitational potential. Our solution gives the exact Hamiltonian to infinite order in the gravitational coupling constant.Comment: 6 pages, latex, 3 figure

    Avoidance Control on Time Scales

    Full text link
    We consider dynamic systems on time scales under the control of two agents. One of the agents desires to keep the state of the system out of a given set regardless of the other agent's actions. Leitmann's avoidance conditions are proved to be valid for dynamic systems evolving on an arbitrary time scale.Comment: Revised edition in JOTA format. To appear in J. Optim. Theory Appl. 145 (2010), no. 3. In Pres

    Generation of Cosmological Seed Magnetic Fields from Inflation with Cutoff

    Full text link
    Inflation has the potential to seed the galactic magnetic fields observed today. However, there is an obstacle to the amplification of the quantum fluctuations of the electromagnetic field during inflation: namely the conformal invariance of electromagnetic theory on a conformally flat underlying geometry. As the existence of a preferred minimal length breaks the conformal invariance of the background geometry, it is plausible that this effect could generate some electromagnetic field amplification. We show that this scenario is equivalent to endowing the photon with a large negative mass during inflation. This effective mass is negligibly small in a radiation and matter dominated universe. Depending on the value of the free parameter of the theory, we show that the seed required by the dynamo mechanism can be generated. We also show that this mechanism can produce the requisite galactic magnetic field without resorting to a dynamo mechanism.Comment: Latex, 16 pages, 2 figures, 4 references added, minor corrections; v4: more references added, boundary term written in a covariant form, discussion regarding other gauge fields added, submitted to PRD; v5: matched with the published versio

    A Simple Theory of Condensation

    Full text link
    A simple assumption of an emergence in gas of small atomic clusters consisting of cc particles each, leads to a phase separation (first order transition). It reveals itself by an emergence of ``forbidden'' density range starting at a certain temperature. Defining this latter value as the critical temperature predicts existence of an interval with anomalous heat capacity behaviour cpΔT1/cc_p\propto\Delta T^{-1/c}. The value c=13c=13 suggested in literature yields the heat capacity exponent α=0.077\alpha=0.077.Comment: 9 pages, 1 figur

    On the infrared freezing of perturbative QCD in the Minkowskian region

    Full text link
    The infrared freezing of observables is known to hold at fixed orders of perturbative QCD if the Minkowskian quantities are defined through the analytic continuation from the Euclidean region. In a recent paper [1] it is claimed that infrared freezing can be proved also for Borel resummed all-orders quantities in perturbative QCD. In the present paper we obtain the Minkowskian quantities by the analytic continuation of the all-orders Euclidean amplitudes expressed in terms of the inverse Mellin transform of the corresponding Borel functions [2]. Our result shows that if the principle of analytic continuation is preserved in Borel-type resummations, the Minkowskian quantities exhibit a divergent increase in the infrared regime, which contradicts the claim made in [1]. We discuss the arguments given in [1] and show that the special redefinition of Borel summation at low energies adopted there does not reproduce the lowest order result obtained by analytic continuation.Comment: 19 pages, 1 figur

    Exact Solutions of Relativistic Two-Body Motion in Lineal Gravity

    Get PDF
    We develop the canonical formalism for a system of NN bodies in lineal gravity and obtain exact solutions to the equations of motion for N=2. The determining equation of the Hamiltonian is derived in the form of a transcendental equation, which leads to the exact Hamiltonian to infinite order of the gravitational coupling constant. In the equal mass case explicit expressions of the trajectories of the particles are given as the functions of the proper time, which show characteristic features of the motion depending on the strength of gravity (mass) and the magnitude and sign of the cosmological constant. As expected, we find that a positive cosmological constant has a repulsive effect on the motion, while a negative one has an attractive effect. However, some surprising features emerge that are absent for vanishing cosmological constant. For a certain range of the negative cosmological constant the motion shows a double maximum behavior as a combined result of an induced momentum-dependent cosmological potential and the gravitational attraction between the particles. For a positive cosmological constant, not only bounded motions but also unbounded ones are realized. The change of the metric along the movement of the particles is also exactly derived.Comment: 37 pages, Latex, 24 figure
    corecore